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Why Are We Having This Conversation? 
Software schedules - still risky after all these years

• Notwithstanding years of
– Lessons learned 
– Process improvement
– Metrics

• We still routinely face
– Large uncertainties in schedule 

estimation 
– Problematic schedule tracking 

• Is there any help?



3
Marghi.Hopkins@nasa.gov
Civil and Commercial Operations

Presentation Topics 
Related to software and schedules

• Effects and trends in software 
scheduling

• The system development lifecycle
• The software subsystem
• Symptoms and causes of scheduling 

problems
• Several approaches to developing 

and maintaining accurate software 
schedules
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Twenty Years And 40+ Missions:  
Summary Of Cost/Schedule Study Results*

Effects of scheduling overruns
• 10% schedule growth corresponds to 12% cost growth
• Assumptions and allotments for schedule growth

– General rule of thumb is 1 month per year
– NASA/JPL guidance is 1.8 months per year
– Four of six telescope missions exceeded NASA/JPL guidance
– Five of six telescope missions exceeded general rule of thumb

• Reliability of estimates improves over the life cycle but still 
contains  large uncertainty 

• Greatest growth occurs in Phase D during Integration and Test
• Short schedules and increased complexity invite failure

– Failed and impaired missions had short schedules or a combination of 
short schedules and high complexity

*Bearden, Perspectives on NASA Mission Cost and Schedule Performance Trends, Presentation 
at GSFC Symposium, 3 June 2008 [http://ses.gsfc.nasa.gov/SE_Seminar_2008.htm]
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Trends:  More Complex, More Complicated

• Complex
– 1 : composed of two or more parts
– 2 : difficult to analyze, understand, or explain 

• Complicated 
– 1 : consisting of parts intricately combined 
– 2: hard to separate, analyze, or solve 

• Classical Systems Engineering assumes a closed 
system: decomposable, linear, predictable

• Newer problems tend to reside in open systems that 
exhibit predictable patterns of behavior, unpredictable 
patterns of behavior, or a combination of both
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The Big Picture
The system development lifecycle

SRR PDR TRRCDR

System 
Requirements

System 
Architecture

System 
Detailed Design

System 
Implementation

System 
Integration
and Testing

System 
Qualification

Testing

SIR

SRR – System Requirements Review
PDR – Preliminary Design Review
CDR – Critical Design Review
SIR – System Integration Review
TRR – Test Readiness Review
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The Section On Which We Are Focused
The software subsystem
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Looking Closer
The software subsystem

System PDR

System Detailed Design System Implementation

System CDR
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Establishing A Schedule And Milestones
The software subsystem

Acceptance

System
PDR

PDR CDRSRR SIR TRR
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Tracking The Schedule
The software subsystem

In a perfect world:

In our world:

Acceptance

Acceptance

PROGRESS

System
PDR

PDR CDRSRR SIR TRR

System
PDR

PDR CDRSRR SIR TRR

ΠΡΟΓΡΕΣΣ
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Typical Software Scheduling And Tracking 
Problems

• The software schedule seems reasonable but keeps 
changing

– The project keeps receiving new requirements
– Coding is finished, but integration and test is taking more time

than expected

• The software schedule is not reasonable and keeps 
slipping

– COTS and reused code didn’t reduce the schedule as much 
as predicted

• Tracking the schedule is difficult
– The code is 90% done
– The software status hasn’t changed since the last reporting 

period
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Software Scheduling And Tracking Problems
Well-known causes

• Poor estimates, 
– Ill-defined requirements 
– Changing requirements 
– Failure to understand the problem 
– Inexperienced team
– Lack of metrics
– Poor or inappropriate use of metrics
– Lack of review by technical people 

• Poor tracking
– No tracking is done
– Inaccurate status of tasks
– Overly optimistic
– Improper use of Earned Value Measurement
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Software Scheduling And Tracking Problems
Less well-recognized causes

• The software schedule is not properly synchronized 
with the system schedule

– A software schedule cannot realistically begin until after the 
System Preliminary Design Review (PDR), when the Review 
Board approves allocation of functionality to hardware and 
software systems

– Starting the software schedule before System PDR generally 
results in slips, rework, and rescheduling

• Failure to include the requirements-design-implement-
test cycle at even the lowest levels, including bug fixes 
and requested changes
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Software Scheduling And Tracking Problems
Personal Experiences

• Inadequate or no time in the schedule for the 
requirements-design-implement-test cycle, especially  
during integration and test

– Little or no unit testing was done 
– Bugs were not correctly fixed or new bugs were installed 

because requirements and design were not reviewed

• Forward progress reverses when problems must be 
fixed, but tracking does not include options for 
accurately conveying project status 

– No consideration of “are we going in the right direction?”
– When 100 lines of code are counted as complete, does 

anybody ever subtract that 100 lines when the module fails in 
integration? No.
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Using Technology To Enhance Project 
Scheduling
Several Examples

• Evidence Based Scheduling* to get a confidence distribution curve 
showing you will meet the target completion date

– Maximum 16 hour tasks – this forces you to do the detailed design
– Capture individual project member’s elapsed time for each task
– Calculate estimate/actual ratios to determine how fast the task was 

done relative to the estimate; perform a Monte Carlo simulation for 
each project member using data from the past 6 months

– Calculate each project member’s probability of completing assigned 
tasks on a given date; the developer who finishes last determines 
when the team is done

• Using this approach produces a realistic project schedule

*Spolsky, Evidence Based Scheduling, Article on the Joel on Software Homepage, 26 
October 2007 [http://www.joelonsoftware.com]
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Benefits Of Evidence Based Scheduling 

• Significantly enhanced accuracy 
• Empirical evidence that allows you to understand 

project status in concrete terms
• Real-time performance data that forces you to prioritize 

and help control scope creep
– Given a bunch of blocks and a box that won’t hold them, you 

must get a bigger box or discard some of the blocks.

• Realistic schedules that permit active project 
management to meet milestones, not just post-mortem 
analysis

• Once procedures are set up, they can be quickly and 
easily deployed in later phases or other projects
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Non-Technological Enhancements To Project 
Scheduling
Several Examples
• Track progress using something other than, or in 

addition to, lines of code
– Number of requirements met 
– Number of Function Points implemented
– Number of test cases successfully executed
– Number of Use Cases that can be executed in a build

• Not difficult to calculate
• Use Cases are almost universally used now for requirements 

analysis and design, so you use existing information
• Helps enforce using the requirements-design-implementation-test 

cycle at all levels: system, CSCI, CSC, and unit

• Functional, rather than quantitative status reports 
provide a more reliable view of progress than the sum of 
number of lines of code generated
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In Summary

• The software schedule should begin after system PDR, 
not before

• Provide sufficient time for the requirements-design-
implement-test cycle at all levels

• Project Management should include metrics that 
provide a realistic view of project status

– Functional milestones, not amount of code
– Current loads on all team members—and disparities between 

them
– Specific identification of open issues and cost overruns
– Dynamic timelines that show the impact of a slipped schedule


